Lie superderivations of generalized matrix algebras

Leila Heidari Zadeh
Islamic Azad University-Shoushtar Branch, Iran

NCRA, VIII, 28 August 2023

R-algebra

R is a commutative ring with identity 1 and all algebras and modules will be unital over R.

R-algebra

R is a commutative ring with identity 1 and all algebras and modules will be unital over R.

By an algebra we sall mean an associative algebra over R.

R-algebra

R is a commutative ring with identity 1 and all algebras and modules will be unital over R.

By an algebra we sall mean an associative algebra over R.
Let \mathcal{A} be an algebra.

R-algebra

R is a commutative ring with identity 1 and all algebras and modules will be unital over R.

By an algebra we sall mean an associative algebra over R.
Let \mathcal{A} be an algebra.
We define Lie product $[x, y]:=x y-y x$ and Jordan product $x \circ y:=x y+y x$ for all $x, y \in \mathcal{A}$. Then $(\mathcal{A},[]$,$) becomes a Lie$ algebra and (\mathcal{A}, \circ) is a Jordan algebra.

Superalgebra

An associative superalgebra, is a \mathbb{Z}_{2}-graded associative algebra. This means that there exist R-submodules \mathcal{A}_{0} and \mathcal{A}_{1} of \mathcal{A} such that $\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$ and $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j}$, where indices are computed modulo 2.
Elements in $\mathcal{A}_{0} \cup \mathcal{A}_{1}$, is said to be homogeneous of degree i and we write $|x|=i$ to mean $x \in \mathcal{A}_{i}$. We say that \mathcal{A}_{0} is the even and \mathcal{A}_{1} is the odd part of \mathcal{A}.

Superalgebra

Define a product in $\mathcal{A}_{0} \cup \mathcal{A}_{1}$, the supercommutator, by

$$
[x, y]_{s}=x y-(-1)^{|x||y|} y x
$$

for $x, y \in \mathcal{A}$.

Superalgebra

Define a product in $\mathcal{A}_{0} \cup \mathcal{A}_{1}$, the supercommutator, by

$$
[x, y]_{s}=x y-(-1)^{|x||y|} y x
$$

for $x, y \in \mathcal{A}$. Note that in case $\mathcal{A}=\mathcal{A}_{0}$ the superproduct coincides with the Lie product.

Superalgebra

Define a product in $\mathcal{A}_{0} \cup \mathcal{A}_{1}$, the supercommutator, by

$$
[x, y]_{s}=x y-(-1)^{|x||y|} y x
$$

for $x, y \in \mathcal{A}$. Note that in case $\mathcal{A}=\mathcal{A}_{0}$ the superproduct coincides with the Lie product. The supercenter of \mathcal{A} is the set

$$
\mathcal{Z}(\mathcal{A})_{s}=\left\{a \in \mathcal{A} \mid[a, x]_{s}=0 \quad \text { for all } x \in \mathcal{A}\right\}
$$

Generalized matrix algebra

A Morita context consists of two unital R-algebras \mathcal{A} and \mathcal{B}, two bimodules $(\mathcal{A}, \mathcal{B})$-bimodule \mathcal{M} and $(\mathcal{B}, \mathcal{A})$-bimodule \mathcal{N}, and two bimodule homomorphisms called the bilinear pairings $\Phi_{\mathcal{M N}}: \mathcal{M} \otimes_{\mathcal{B}} \mathcal{N} \rightarrow \mathcal{A}$ and $\Psi_{\mathcal{N M}}: \mathcal{N} \otimes_{\mathcal{A}} \mathcal{M} \rightarrow \mathcal{B}$ satisfying the following commutative diagrams:

Generalized matrix algebra

and

Generalized matrix algebra

We write this Morita context as $\left(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N}, \Phi_{\mathcal{M N}}, \Psi_{\mathcal{N M}}\right)$

Generalized matrix algebra

We write this Morita context as $\left(\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N}, \Phi_{\mathcal{M N}}, \Psi_{\mathcal{N M}}\right)$
then the set

$$
\mathcal{G}=\left[\begin{array}{cc}
\mathcal{A} & \mathcal{M} \\
\mathcal{N} & \mathcal{B}
\end{array}\right]=\left\{\left.\left[\begin{array}{cc}
a & m \\
n & b
\end{array}\right] \right\rvert\, a \in \mathcal{A}, m \in \mathcal{M}, n \in \mathcal{N}, b \in \mathcal{B}\right\}
$$

forms an R-algebra under matrix opreations, where at least one of the two bimodules \mathcal{M} and \mathcal{N} is distinct from zero. Such an R-algebra is usually called a generalized matrix algebra.

Generalized matrix algebra

By letting

$$
\mathcal{G}_{0}=\left(\begin{array}{ll}
\mathcal{A} & \\
& \mathcal{B}
\end{array}\right), \mathcal{G}_{1}=\left(\begin{array}{ll}
& \mathcal{M} \\
\mathcal{N} &
\end{array}\right)
$$

It is easily verified that

$$
\mathcal{G}=\left(\begin{array}{cc}
\mathcal{A} & \mathcal{M} \\
\mathcal{N} & \mathcal{B}
\end{array}\right)
$$

is a superalgebra and

$$
\mathcal{Z}(\mathcal{G})_{s}=\mathcal{Z}(\mathcal{G})
$$

Generalized matrix algebra

By letting

$$
\mathcal{G}_{0}=\left(\begin{array}{ll}
\mathcal{A} & \\
& \mathcal{B}
\end{array}\right), \mathcal{G}_{1}=\left(\begin{array}{ll}
& \mathcal{M} \\
\mathcal{N} &
\end{array}\right)
$$

It is easily verified that

$$
\mathcal{G}=\left(\begin{array}{cc}
\mathcal{A} & \mathcal{M} \\
\mathcal{N} & \mathcal{B}
\end{array}\right)
$$

is a superalgebra and

$$
\mathcal{Z}(\mathcal{G})_{s}=\mathcal{Z}(\mathcal{G})
$$

Note that
$\mathcal{Z}(\mathcal{G})=\{a \oplus b \mid a \in \mathcal{A}, b \in \mathcal{B}, a m=m b, n a=b n$, for all $m \in \mathcal{M}, n \in \mathcal{N}\}$ where

$$
a \oplus b=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) .
$$

It is a fascinating topic to study the connection between the associative, Lie and Jordan structures on \mathcal{A}. In this field, two classes of mappings are of crucial importance.

Differential operators

One of them consists of mappings preserving a type of product, for example, Jordan homomorphisms and Lie homomorphisms.

Differential operators

One of them consists of mappings preserving a type of product, for example, Jordan homomorphisms and Lie homomorphisms.

The other one is formed by differential operators, satisfying a type of Leibniz formulas, such as Lie derivations and Jordan derivations.

Differential operators

R-linear map d from \mathcal{A} into an \mathcal{A}-bimodule \mathcal{M} is a derivation if

$$
d(x y)=d(x) y+x d(y)
$$

for all $x, y \in \mathcal{A}$.

Differential operators

R-linear map d from \mathcal{A} into an \mathcal{A}-bimodule \mathcal{M} is a derivation if

$$
d(x y)=d(x) y+x d(y)
$$

for all $x, y \in \mathcal{A}$.
It is called a Lie derivation if

$$
d([x, y])=[d(x), y]+[x, d(y)]
$$

for all $x, y \in \mathcal{A}$.

Differential operators

R-linear map d from \mathcal{A} into an \mathcal{A}-bimodule \mathcal{M} is a derivation if

$$
d(x y)=d(x) y+x d(y)
$$

for all $x, y \in \mathcal{A}$.
It is called a Lie derivation if

$$
d([x, y])=[d(x), y]+[x, d(y)]
$$

for all $x, y \in \mathcal{A}$.
Clearly, each derivation is a Lie derivation, but the converse is not true in general.

Differential operators

A standard example of a Lie derivation is of the form $d=\delta+\tau$, where $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation and $\tau: \mathcal{A} \rightarrow \mathcal{Z}(\mathcal{A})$ is a linear map, where $\mathcal{Z}(\mathcal{A})$ denotes the center of \mathcal{A}, such that $\tau([a, b])=0$, for all $a, b \in \mathcal{A}$.

Differential operators

A standard example of a Lie derivation is of the form $d=\delta+\tau$, where $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation and $\tau: \mathcal{A} \rightarrow \mathcal{Z}(\mathcal{A})$ is a linear map, where $\mathcal{Z}(\mathcal{A})$ denotes the center of \mathcal{A}, such that $\tau([a, b])=0$, for all $a, b \in \mathcal{A}$.

Therefore, the Lie derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ is in standard form iff $d=\delta+\tau$, where δ is a derivation of \mathcal{A} and τ is a linear center valued map on \mathcal{A} and vanishes at commutators. There are many papers concerning the study of conditions, which Lie derivations of rings or algebras are in standard form.

Over the recent years there has been a considerable interest in the study of superalgebra versions of Herstein's theorem on superderivations.

Over the recent years there has been a considerable interest in the study of superalgebra versions of Herstein's theorem on superderivations.

Motivated by [3] (2-local superderivations on a superalgebra $M_{n}(\mathbb{C})$) and [1] (On superderivations and super-biderivations of trivial extensions and triangular matrix rings), in this paper we will address the structure of Lie superderivations on generalized matrix algebra.

As you see in below, we naturally obtain the description concerning superderivations of \mathcal{G} via the characterization of derivations and Lie superderivations on \mathcal{G}.

As you see in below, we naturally obtain the description concerning superderivations of \mathcal{G} via the characterization of derivations and Lie superderivations on \mathcal{G}.

The purpose is to identify a class of superalgebras for which every Lie superderivation is in standard form.

Superderivation

For $i=0,1$ we say that a superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that

Superderivation

For $i=0,1$ we say that a superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(A_{j}\right) \subseteq A_{i+j}$ (index modulo 2) and

Superderivation

For $i=0,1$ we say that a superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(A_{j}\right) \subseteq A_{i+j}$ (index modulo 2) and
$d_{i}(x y)=d_{i}(x) y+(-1)^{i|x|} x d_{i}(y)$ for all $x, y \in A_{0} \cup A_{1}$.

Superderivation

For $i=0,1$ we say that a superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(A_{j}\right) \subseteq A_{i+j}$ (index modulo 2) and
$d_{i}(x y)=d_{i}(x) y+(-1)^{i|x|} x d_{i}(y)$ for all $x, y \in A_{0} \cup A_{1}$.
A superderivation of \mathcal{A} is the sum of a superderivation of degree 0 and a superderivation of degree 1 . Note that every superderivation of degree 0 is actually a derivation from \mathcal{A} to \mathcal{A}.

Lie superderivation

We say that a Lie superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that

Lie superderivation

We say that a Lie superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(\mathcal{A}_{j}\right) \subseteq \mathcal{A}_{i+j}$ where indices are computed modulo 2 and

Lie superderivation

We say that a Lie superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(\mathcal{A}_{j}\right) \subseteq \mathcal{A}_{i+j}$ where indices are computed modulo 2 and $d_{i}\left([x, y]_{s}\right)=\left[d_{i}(x), y\right]_{s}+(-1)^{i|x|}\left[x, d_{i}(y)\right]_{s}$ for all $x, y \in A_{0} \cup A_{1}$.

Lie superderivation

We say that a Lie superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(\mathcal{A}_{j}\right) \subseteq \mathcal{A}_{i+j}$ where indices are computed modulo 2 and $d_{i}\left([x, y]_{s}\right)=\left[d_{i}(x), y\right]_{s}+(-1)^{i|x|}\left[x, d_{i}(y)\right]_{s}$ for all
$x, y \in A_{0} \cup A_{1}$.
A Lie superderivation is the sum of a Lie superderivation of degree 0 and a Lie superderivation of degree 1 .

Lie superderivation

We say that a Lie superderivation of degree i is a R-linear map $d_{i}: \mathcal{A} \rightarrow \mathcal{A}$ such that $d_{i}\left(\mathcal{A}_{j}\right) \subseteq \mathcal{A}_{i+j}$ where indices are computed modulo 2 and $d_{i}\left([x, y]_{s}\right)=\left[d_{i}(x), y\right]_{s}+(-1)^{i|x|}\left[x, d_{i}(y)\right]_{s}$ for all
$x, y \in A_{0} \cup A_{1}$.
A Lie superderivation is the sum of a Lie superderivation of degree 0 and a Lie superderivation of degree 1 .

In the case of trivial superalgebras (i.e., the odd part is 0) the consept of a Lie superderivation coincides with that of a Lie derivation.

From now on, we assume that the modules \mathcal{M} and \mathcal{N} appeared in the generalized matrix algebra \mathcal{G} are 2 -torion free (\mathcal{M} is called 2-torsion free if $2 m=0$ implies $m=0$ for any $m \in \mathcal{M}$).

Proposition

Let d_{0} be a Lie superderivation of degree 0 on generalized matrix algebra \mathcal{G}. Then d_{0} is of the following form

Proposition

Let d_{0} be a Lie superderivation of degree 0 on generalized matrix algebra \mathcal{G}. Then d_{0} is of the following form

$$
d_{0}\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1}(a)+\alpha_{4}(b) & \mu_{2}(m) \\
\nu_{3}(n) & \beta_{1}(a)+\beta_{4}(b)
\end{array}\right)
$$

where $\alpha_{1}: \mathcal{A} \rightarrow \mathcal{A}, \alpha_{4}: \mathcal{B} \rightarrow Z(\mathcal{A}), \mu_{2}: \mathcal{M} \rightarrow \mathcal{M}, \nu_{3}: \mathcal{N} \rightarrow \mathcal{N}$, $\beta_{1}: \mathcal{A} \rightarrow \mathcal{B}, \beta_{4}: \mathcal{B} \rightarrow Z(\mathcal{B})$ are linear maps satisfying the following conditions

1. α_{1}, β_{4} are Lie derivations;
2. $\beta_{1}\left(\left[a, a^{\prime}\right]\right)=0$ for all $a, a^{\prime} \in \mathcal{A}$ and $\alpha_{4}\left(\left[b, b^{\prime}\right]\right)=0$ for all $b, b^{\prime} \in \mathcal{B}$;
3. $\mu_{2}(a m)=a \mu_{2}(m)+\alpha_{1}(a) m-m \beta_{1}(a)$;
4. $\mu_{2}(m b)=\mu_{2}(m) b+m \beta_{4}(b)-\alpha_{4}(b) m$;
5. $\nu_{3}(n a)=n \alpha_{1}(a)+\nu_{3}(n) a-\beta_{1}(a) n$;
6. $\nu_{3}(b n)=\beta_{4}(b) n+b \nu_{3}(n)-n \alpha_{4}(b) n$;
7. $\alpha_{1}(m n)=\mu_{2}(m) n+m \nu_{3}(n)-\alpha_{4}(n m)$;
8. $\beta_{4}(n m)=n \mu_{2}(m)+\nu_{3}(n) m-\beta_{1}(m n)$.

Proposition

Let d_{1} be a Lie superderivation of degree 1 on generalized matrix algebra \mathcal{G}. Then d_{1} is of the following form

Proposition

Let d_{1} be a Lie superderivation of degree 1 on generalized matrix algebra \mathcal{G}. Then d_{1} is of the following form

$$
d_{1}\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
m n_{0}-m_{0} n & a m_{0}-m_{0} b \\
n_{0} a-b n_{0} & n_{0} m-n m_{0}
\end{array}\right)
$$

for some $m_{0} \in \mathcal{M}, n_{0} \in \mathcal{N}$.

Theorem
Let \mathcal{G} be a generalized matrix algebra. A linear map d is a Lie superderivation on \mathcal{G} if and only if it has the following presentation:

Theorem
Let \mathcal{G} be a generalized matrix algebra. A linear map d is a Lie superderivation on \mathcal{G} if and only if it has the following presentation:
$d\left(\begin{array}{cc}a & m \\ n & b\end{array}\right)=\left(\begin{array}{cc}\alpha_{1}(a)+m n_{0}-m_{0} n+\alpha_{4}(b) & a m_{0}-m_{0} b+\mu_{2}(m) \\ n_{0} a-b n_{0}+\nu_{3}(n) & \beta_{1}(a)+n_{0} m-n m_{0}+\beta_{4}(b)\end{array}\right)$
wher $m_{0} \in \mathcal{M}, n_{0} \in \mathcal{N}$ and $\alpha_{1}: \mathcal{A} \rightarrow \mathcal{A}, \alpha_{4}: \mathcal{B} \rightarrow Z(\mathcal{A}), \mu_{2}: \mathcal{M} \rightarrow \mathcal{M}$, $\nu_{3}: \mathcal{N} \rightarrow \mathcal{N}, \beta_{1}: \mathcal{A} \rightarrow \mathcal{B}, \beta_{4}: \mathcal{B} \rightarrow Z(\mathcal{B})$ are linear maps satisfying the following conditions:

Theorem
Let \mathcal{G} be a generalized matrix algebra. A linear map d is a Lie superderivation on \mathcal{G} if and only if it has the following presentation:
$d\left(\begin{array}{cc}a & m \\ n & b\end{array}\right)=\left(\begin{array}{cc}\alpha_{1}(a)+m n_{0}-m_{0} n+\alpha_{4}(b) & a m_{0}-m_{0} b+\mu_{2}(m) \\ n_{0} a-b n_{0}+\nu_{3}(n) & \beta_{1}(a)+n_{0} m-n m_{0}+\beta_{4}(b)\end{array}\right)$
wher $m_{0} \in \mathcal{M}, n_{0} \in \mathcal{N}$ and $\alpha_{1}: \mathcal{A} \rightarrow \mathcal{A}, \alpha_{4}: \mathcal{B} \rightarrow Z(\mathcal{A}), \mu_{2}: \mathcal{M} \rightarrow \mathcal{M}$, $\nu_{3}: \mathcal{N} \rightarrow \mathcal{N}, \beta_{1}: \mathcal{A} \rightarrow \mathcal{B}, \beta_{4}: \mathcal{B} \rightarrow Z(\mathcal{B})$ are linear maps satisfying the following conditions:

1. α_{1}, β_{4} are Lie derivations;
2. $\beta_{1}\left(\left[a, a^{\prime}\right]\right)=0$ for all $a, a^{\prime} \in \mathcal{A}$ and $\alpha_{4}\left(\left[b, b^{\prime}\right]\right)=0$ for all $b, b^{\prime} \in \mathcal{B}$;
3. $\mu_{2}(a m)=a \mu_{2}(m)+\alpha_{1}(a) m-m \beta_{1}(a)$;
4. $\mu_{2}(m b)=\mu_{2}(m) b+m \beta_{4}(b)-\alpha_{4}(b) m$;
5. $\nu_{3}(n a)=n \alpha_{1}(a)+\nu_{3}(n) a-\beta_{1}(a) n$;
6. $\nu_{3}(b n)=\beta_{4}(b) n+b \nu_{3}(n)-n \alpha_{4}(b) n$;
7. $\alpha_{1}(m n)=\mu_{2}(m) n+m \nu_{3}(n)-\alpha_{4}(n m)$;
8. $\beta_{4}(n m)=n \mu_{2}(m)+\nu_{3}(n) m-\beta_{1}(m n)$.

In order to proceed with our work to identify sufficient conditions on generalized matrix algebra \mathcal{G} as a class of superalgebras for which every Lie superderivations is written in the standard form we are forced to characterize superderivations of generalized matrix algebra and supercentral mapping of \mathcal{G} which maps
supercommutators to 0 .

In order to proceed with our work to identify sufficient conditions on generalized matrix algebra \mathcal{G} as a class of superalgebras for which every Lie superderivations is written in the standard form we are forced to characterize superderivations of generalized matrix algebra and supercentral mapping of \mathcal{G} which maps supercommutators to 0 .

Since every superderivation of degree 0 on a superalgebra \mathcal{A} is actually a derivation with the property $d_{0}\left(\mathcal{A}_{0}\right) \subseteq \mathcal{A}_{0}$ and $d_{0}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{A}_{1}$, and by concerning derivations of \mathcal{G} in [5, Propositions 4.2], we get:

Proposition

Let $\delta_{0}: \mathcal{G} \rightarrow \mathcal{G}$ be a linear map. Then δ_{0} is a superderivation degree 0 if and only if δ_{0} has the form

$$
\delta_{0}\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{ll}
\alpha_{1}(a) & \mu_{2}(m) \\
\nu_{3}(n) & \beta_{4}(b)
\end{array}\right)
$$

where $\alpha_{1}: \mathcal{A} \rightarrow \mathcal{A}, \mu_{2}: \mathcal{M} \rightarrow \mathcal{M}, \nu_{3}: \mathcal{N} \rightarrow \mathcal{N}, \beta_{1}: \mathcal{B} \rightarrow \mathcal{B}$ are linear maps satisfying the following conditions:

1. α_{1}, β_{4} are derivations;
2. $\mu_{2}(a m)=a \mu_{2}(m)+\alpha_{1}(a) m, \mu_{2}(m b)=\mu_{2}(m) b+m \beta_{4}(b)$;
3. $\nu_{3}(n a)=n \alpha_{1}(a)+\nu_{3}(n) a, \nu_{3}(b n)=\beta_{4}(b) n+b \nu_{3}(n)$;
4. $\alpha_{1}(m n)=\mu_{2}(m) n+m \nu_{3}(n), \beta_{4}(n m)=n \mu_{2}(m)+\nu_{3}(n) m$.

Proposition

Let $\delta_{1}: \mathcal{G} \rightarrow \mathcal{G}$ be a linear map. Then δ_{1} is a superderivation degree 1 if and only if δ_{1} has the form

$$
\delta_{1}\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
m n_{0}-m_{o} n & a m_{0}-m_{0} b \\
n_{0} a-b n_{0} & n_{0} m-n m_{0}
\end{array}\right)
$$

for some $m_{0} \in \mathcal{M}, n_{0} \in \mathcal{N}$.

Corollary

A superderivation δ on \mathcal{G} is of the form

$$
\delta\left(\begin{array}{ll}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1}(a)+m n_{0}-m_{o} n & a m_{0}-m_{0} b+\mu_{2}(m) \\
n_{0} a-b n_{0}+\nu_{3}(n) & n_{0} m-n m_{0}+\beta_{4}(b)
\end{array}\right)
$$

for some $m_{0} \in \mathcal{M}, n_{0} \in \mathcal{N}$ and linear maps $\alpha_{1}: \mathcal{A} \rightarrow \mathcal{A}$, $\mu_{2}: \mathcal{M} \rightarrow \mathcal{M}, \nu_{3}: \mathcal{N} \rightarrow \mathcal{N}, \beta_{1}: \mathcal{B} \rightarrow \mathcal{B}$, satisfying the following conditions:

1. α_{1}, β_{4} are derivations;
2. $\mu_{2}(a m)=a \mu_{2}(m)+\alpha_{1}(a) m, \mu_{2}(m b)=\mu_{2}(m) b+m \beta_{4}(b)$;
3. $\nu_{3}(n a)=n \alpha_{1}(a)+\nu_{3}(n) a, \nu_{3}(b n)=\beta_{4}(b) n+b \nu_{3}(n)$;
4. $\alpha_{1}(m n)=\mu_{2}(m) n+m \nu_{3}(n), \beta_{4}(n m)=n \mu_{2}(m)+\nu_{3}(n) m$.

Proposition

Let \mathcal{G} be a generalized matrix algebra. A linear mapping τ is supercenter valued and vanishes at supercommutators if and only if τ has the presentation

$$
\tau\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
\gamma_{1}(a)+\gamma_{4}(b) & \\
& \lambda_{1}(a)+\lambda_{4}(b)
\end{array}\right)
$$

Proposition

Let \mathcal{G} be a generalized matrix algebra. A linear mapping τ is supercenter valued and vanishes at supercommutators if and only if τ has the presentation

$$
\tau\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
\gamma_{1}(a)+\gamma_{4}(b) & \\
& \lambda_{1}(a)+\lambda_{4}(b)
\end{array}\right)
$$

where $\gamma_{1}: \mathcal{A} \rightarrow Z(\mathcal{A})$, $\gamma_{4}: \mathcal{B} \rightarrow Z(\mathcal{A}), \lambda_{1}: \mathcal{A} \rightarrow Z(\mathcal{B})$,
$\lambda_{4}: \mathcal{B} \rightarrow Z(\mathcal{B})$ are linear maps vanishing at commutators, having the following properties:

$$
\begin{aligned}
& \text { 1. } \gamma_{1}(a) \oplus \lambda_{1}(a) \in Z(\mathcal{G}) \text { and } \gamma_{4}(b) \oplus \lambda_{4}(b) \in Z(\mathcal{G}) \text {; } \\
& \text { 2. } \gamma_{1}(m n)=-\gamma_{4}(n m) \text { and } \lambda_{1}(m n)=-\lambda_{4}(n m) \text {. }
\end{aligned}
$$

Following the method of [2, Theorem 6], the next theorem states a necessary and suffcient condition for a Lie superderivation on a general matrix algebra to be in stadard form.

Theorem

Let \mathcal{G} be a generalized matrix algebra. A Lie superderivation d on \mathcal{G} of the form
$d\left(\begin{array}{cc}a & m \\ n & b\end{array}\right)=\left(\begin{array}{cc}\alpha_{1}(a)+m n_{0}-m_{0} n+\alpha_{4}(b) & a m_{0}-m_{0} b+\mu_{2}(m) \\ n_{0} a-b n_{0}+\nu_{3}(n) & \beta_{1}(a)+n_{0} m-n m_{0}+\beta_{4}(b)\end{array}\right)$
is in standard form if and only if there exist linear mappings
$\gamma_{\mathcal{A}}: \mathcal{A} \rightarrow Z(\mathcal{A})$ and $\gamma_{\mathcal{B}}: \mathcal{B} \rightarrow Z(\mathcal{B})$ satisfying:

1. $\alpha_{1}-\gamma_{\mathcal{A}}$ is a derivation on \mathcal{A} and $\beta_{4}-\gamma_{\mathcal{B}}$ is a derivation on \mathcal{B};
2. $\gamma_{\mathcal{A}}(a) \oplus \beta_{1}(a) \in Z(\mathcal{G})$ and $\alpha_{4}(b) \oplus \gamma_{\mathcal{B}}(b) \in Z(\mathcal{G})$;
3. $\gamma_{\mathcal{A}}(m n)=-\alpha_{4}(n m)$ and $\beta_{1}(m n)=-\gamma_{\mathcal{B}}(n m)$.

H．Cheraghpour，M．N．Ghosseiri，On superderivations and super－biderivations of trivial extensions and triangular matrix rings，Comm．Algebra．47（4）（2019），1662－1670．

图 W．S．Cheung，Lie derivations of triangular algebras，Linear Multilinear Algebra 51（3），（2003），299－310．
：A．Fošner，M．Fošner，2－local superderivations on a superalgebra $M_{n}(\mathbb{C})$ ．Monatsh Math 156 （2009），307－311．

國 H．Ghahramani，M．N．Ghosseiri and S．Safari，Some questions concerning superderivations on \mathbb{Z}_{2}－graded rings，Aequationes Math． 91 （2107），725－738．

围 Y．Li，F．Wei，Semi－centralizing maps of generalized matrix algebras Linear Algebra Appl．436（5）（2012），1122－1153．

R A．H．Mokhtari，H．R．Ebrahimi Vishki，More on Lie derivations of generalized matrix algebras，Miskolc Math．Notes， 1 （2018）， 385－396．
Y．Wang，Lie superderivations of superalgebras，Linear Multil Algebra 64 （8）（2016），1518－1526．

Thank you for attending!

